On the heels of OpenAI’s report “The state of enterprise AI,” Anthropic published a blog post detailing research about how AI is being used by the employees building AI. The researchers surveyed 132 engineers and researchers, conducted 53 interviews, and looked at Claude usage data.
Our research reveals a workplace facing significant transformations: Engineers are getting a lot more done, becoming more “full-stack” (able to succeed at tasks beyond their normal expertise), accelerating their learning and iteration speed, and tackling previously-neglected tasks. This expansion in breadth also has people wondering about the trade-offs—some worry that this could mean losing deeper technical competence, or becoming less able to effectively supervise Claude’s outputs, while others embrace the opportunity to think more expansively and at a higher level. Some found that more AI collaboration meant they collaborated less with colleagues; some wondered if they might eventually automate themselves out of a job.
The post highlights several interesting patterns.
- Employees say Claude now touches about 60% of their work and boosts output by roughly 50%.
- Employees say that 27% of AI‑assisted tasks is work that wouldn’t have happened otherwise—like papercut fixes, tooling, and exploratory prototypes.
- Engineers increasingly use it for new feature implementation and even design/planning.
Perhaps most provocative is career trajectory. Many engineers describe becoming managers of AI agents, taking accountability for fleets of instances and spending more time reviewing than writing net‑new code. Short‑term optimism meets long‑term uncertainty: productivity is up, ambition expands, but the profession’s future shape—levels of abstraction, required skills, and pathways for growth—remains unsettled. See also my series on the design talent crisis.


