Skip to content

173 posts tagged with “ai”

This post from Carly Ayres breaks down a beef between Michael Roberson (developer of an AI-enabled moodboard tool) and Elizabeth Goodspeed (writer and designer, oft-linked on this blog) and explores ragebait, putting in the reps as a junior, and designers as influencers.

Tweet by Michael Roberson defending Moodboard AI against criticism, saying if faster design research threatens your job, “you’re ngmi.” Screenshot shows a Sweetgreen brand audit board with colors, fonts, and imagery.

Tweet from Michael Roberson

The tweet earned 30,000 views, but only about 20 likes. “That ratio was pretty jarring,” [Roberson] said. Still, the strategy felt legible. “When I post things like, ‘if you don’t do X, you’re not going to make it,’ obviously, I don’t think that. These tools aren’t really capable of replacing designers just yet. It’s really easy to get views baiting and fear-mongering.”

Much like the provocative Artisan campaign, I think this is a net negative for the brand. Pretty sure I won’t be trying out Moodboard AI anytime soon, ngl.

But stepping back from the internet beef, Ayres argues that it’s a philosophical difference about the role friction in the creative process.

Michael’s experience mirrors that of many young designers: brand audits felt like busywork during his Landor internship. “That process was super boring,” he told me. “I wasn’t learning much by copy-pasting things into a deck.” His tool promises to cut through that inefficiency, letting teams reach visual consensus faster and spend more time on execution.

Young Michael, the process is the point! Without doing this boring stuff, by automating it with AI, how are you going to learn? This is but one facet of the whole discussion around expertise, wisdom, and the design talent crisis.

Goodspeed agrees with me:

Elizabeth sees it differently. “What’s interesting to me,” Elizabeth noted, “is how many people are now entering this space without a personal understanding of how the process of designing something actually works.” For her, that grunt work was formative. “The friction is the process,” she explained. “That’s how you form your point of view. You can’t just slap seven images on a board. You’re forced to think: What’s relevant? How do I organize this and communicate it clearly?”

Ultimately, the saddest point that Ayres makes—and noted by my friend Eric Heiman—is this:

When you’re young, online, and trying to get a project off the ground, caring about distribution is the difference between a hobby and a company. But there’s a cost. The more you perform expertise, the less you develop it. The more you optimize for engagement, the more you risk flattening what gave the work meaning in the first place. In a world where being known matters more than knowing, the incentives point toward performance over practice. And we all become performers in someone else’s growth strategy.

…Because when distribution matters more than craft, you don’t become a designer by designing. You become a designer by being known as one. That’s the game now.

preview-1755813084079.png

Mooooooooooooooood

Is design discourse the new growth hack?

open.substack.com iconopen.substack.com
Surreal black-and-white artwork of a glowing spiral galaxy dripping paint-like streaks over a city skyline at night.

Why I’m Keeping My Design Title

In the 2011 documentary Jiro Dreams of Sushi, then 85 year-old sushi master Jiro Ono says this about craft:

Once you decide on your occupation… you must immerse yourself in your work. You have to fall in love with your work. Never complain about your job. You must dedicate your life to mastering your skill. That’s the secret of success and is the key to being regarded honorably.

Craft is typically thought of as the formal aspects of any field such as design, woodworking, writing, or cooking. In design, we think about composition, spacing, and typography—being pixel-perfect. But one’s craft is much more than that. Ono’s sushi craft is not solely about slicing fish and pressing it against a bit of rice. It is also about picking the right fish, toasting the nori just so, cooking the rice perfectly, and running a restaurant. It’s the whole thing.

As a follow-up to yesterday’s item on how Google’s AI overviews are curtailing traffic to websites by as much as 25%, here is a link to Nielsen Norman Group’s just-published study showing that generative AI is reshaping search.

Kate Moran, Maria Rosala and Josh Brown:

While AI offers compelling shortcuts around tedious research tasks, it isn’t close to completely replacing traditional search. But, even when people are using traditional search, the AI-generated overview that now tops almost all search-results pages steals a significant amount of attention and often shortcuts the need to visit the actual pages.

They write that users have developed a way to search over the years, skipping sponsored results and heading straight for the organic links. Users also haven’t completely broken free of traditional Google Search, now adding chatbots to the mix:

While generative AI does offer enough value to change user behaviors, it has not replaced traditional search entirely. Traditional search and AI chats were often used in tandem to explore the same topic and were sometimes used to fact-check each other.

All our participants engaged in traditional search (using keywords, evaluating results pages, visiting content pages, etc.) multiple times in the study. Nobody relied entirely on genAI’s responses (in chat or in an AI overview) for all their information-seeking needs.

In many ways, I think this is smart. Unless “web search” is happening, I tend double-check ChatGPT and Claude, especially for anything historical and mission-critical. I also like Perplexity for that fact—because it shows me its receipts by giving me sources.

preview-1755581621661.png

How AI Is Changing Search Behaviors

Our study shows that generative AI is reshaping search, but long-standing habits persist. Many users still default to Google, giving Gemini a fighting chance.

nngroup.com iconnngroup.com

Jessica Davies reports that new publisher data suggests that some sites are getting 25% less traffic from Google than the previous year.

Writing in Digiday:

Organic search referral traffic from Google is declining broadly, with the majority of DCN member sites — spanning both news and entertainment — experiencing traffic losses from Google search between 1% and 25%. Twelve of the respondent companies were news brands, and seven were non-news.

Jason Kint, CEO of DCN, says that this is a “direct consequence of Google AI Overviews.”

I wrote previously about the changing economics of the web here, here, and here.

And related, Eric Mersch writes in a LinkedIn post that Monday.com’s stock fell 23% because co-CEO Roy Mann said, “We are seeing some softness in the market due to Google algorithm,” during their Q2 earnings call and the analysts just kept hammering him and the CFO about how the algo changes might affect customer acquisition.

Analysts continued to press the issue, which caught company management completely off guard. Matthew Bullock from Bank of America Merrill Lynch asked frankly, “And then help us understand, why call this out now? How did the influence of Google SEO disruption change this quarter versus 1Q, for example?” The CEO could only respond, “So look, I think like we said, we optimize in real-time. We just budget daily,” implying that they were not aware of the problem until they saw Q2 results.

This is the first public sign that the shift from Google to AI-powered searches is having an impact.

preview-1755493440980.jpg

Google AI Overviews linked to 25% drop in publisher referral traffic, new data shows

The majority of Digital Content Next publisher members are seeing traffic losses from Google search between 1% and 25% due to AI Overviews.

digiday.com icondigiday.com

I enjoyed this interview with Notion’s CEO, Ivan Zhao over at the Decoder podcast, with substitute host, Casey Newton. What I didn’t quite get when I first used Notion was the “LEGO” aspect of it. Their vision is to build business software that is highly malleable and configurable to do all sorts of things. Here’s Zhao:

Well, because it didn’t quite exist with software. If you think about the last 15 years of [software-as-a-service], it’s largely people building vertical point solutions. For each buyer, for each point, that solution sort of makes sense. The way we describe it is that it’s like a hard plastic solution for your problem, but once you have 20 different hard plastic solutions, they sort of don’t fit well together. You cannot tinker with them. As an end user, you have to jump between half a dozen of them each day.

That’s not quite right, and we’re also inspired by the early computing pioneers who in the ‘60s and ‘70s thought that computing should be more LEGO-like rather than like hard plastic. That’s what got me started working on Notion a long time ago, when I was reading a computer science paper back in college.

From a user experience POV, Notion is both simple and exceedingly complicated. Taking notes is easy. Building the system for a workflow, not so much.

In the second half, Newton (gently) presses Zhao on the impact of AI on the workforce and how productivity software like Notion could replace headcount.

Newton: Do you think that AI and Notion will get to a point where executives will hire fewer people, because Notion will do it for them? Or are you more focused on just helping people do their existing jobs?

Zhao: We’re actually putting out a campaign about this, in the coming weeks or months. We want to push out a more amplifying, positive message about what Notion can do for you. So, imagine the billboard we’re putting out. It’s you in the center. Then, with a tool like Notion or other AI tools, you can have AI teammates. Imagine that you and I start a company. We’re two co-founders, we sign up for Notion, and all of a sudden, we’re supplemented by other AI teammates, some taking notes for us, some triaging, some doing research while we’re sleeping.

Zhao dodges the “hire fewer people” part of the question and instead, answers with “amplifying” people or making them more productive.

preview-1755062355751.jpg

Notion CEO Ivan Zhao wants you to demand better from your tools

Notion’s Ivan Zhao on AI agents, productivity, and how software will change in the future.

theverge.com icontheverge.com

Ben Davies-Romano argues that the AI chat box is our new design interface:

Every interaction with a large language model starts the same way: a blinking cursor in a blank text field. That unassuming box is more than an input — it’s the interface between our human intent and the model’s vast, probabilistic brain.

This is where the translation happens. We pour in the nuance, constraints, and context of our ideas; the model converts them into an output. Whether it’s generating words, an image, a video sequence, or an interactive prototype, every request passes through this narrow bridge.

It’s the highest-stakes, lowest-fidelity design surface I’ve ever worked with: a single field that stands between human creativity and an engine capable of reshaping it into almost any form, albeit with all the necessary guidance and expertise applied.

In other words, don’t just say “Make it better,” but guide the AI instead.

That’s why a vague, lazy prompt, like “make it better”, is the design equivalent of telling a junior designer “make it intuitive” and walking away. You’ll get something generic, safe, and soulless, not because the AI “missed the brief,” but because there was no brief.

Without clear stakes, a defined brand voice, and rich context, the system will fill in the blanks with its default, most average response. And “average” is rarely what design is aiming for.

And he makes a point that designers should be leading the charge on showing others what generative AI can do:

In the age of AI, it shouldn’t be everyone designing, per say. It should be designers using AI as an extension of our craft. Bringing our empathy, our user focus, our discipline of iteration, and our instinct for when to stop generating and start refining. AI is not a replacement for that process; it’s a multiplier when guided by skilled hands.

So, let’s lead. Let’s show that the real power of AI isn’t in what it can generate, but in how we guide it — making it safer, sharper, and more human. Let’s replace the fear and the gimmicks with clarity, empathy, and intentionality.

The blank prompt is our new canvas. And friends, we need to be all over it.

preview-1754887809469.jpeg

Prompting is designing. And designers need to lead.

Forget “prompt hacks.” Designers have the skills to turn AI from a gimmick into a powerful, human-centred tool if we take the lead.

medium.com iconmedium.com

Yesterday, OpenAI launched GPT-5, their latest and greatest model that replaces the confusing assortment of GPT-4o, o3, o4-mini, etc. with just two options: GPT-5 and GPT-5 pro. The reasoning is built in and the new model is smart enough to know what to think harder, or when a quick answer suffices.

Simon Willison deep dives into GPT-5, exploring its mix of speed and deep reasoning, massive context limits, and competitive pricing. He sees it as a steady, reliable default for everyday work rather than a radical leap forward:

I’ve mainly explored full GPT-5. My verdict: it’s just good at stuff. It doesn’t feel like a dramatic leap ahead from other LLMs but it exudes competence—it rarely messes up, and frequently impresses me. I’ve found it to be a very sensible default for everything that I want to do. At no point have I found myself wanting to re-run a prompt against a different model to try and get a better result.

It’s a long technical read but interesting nonetheless.

preview-1754630277862.jpg

GPT-5: Key characteristics, pricing and model card

I’ve had preview access to the new GPT-5 model family for the past two weeks (see related video) and have been using GPT-5 as my daily-driver. It’s my new favorite …

simonwillison.net iconsimonwillison.net
Illustration of diverse designers collaborating around a table with laptops and design materials, rendered in a vibrant style with coral, yellow, and teal colors

Five Practical Strategies for Entry-Level Designers in the AI Era

In Part I of this series on the design talent crisis, I wrote about the struggles recent grads have had finding entry-level design jobs and what might be causing the stranglehold on the design job market. In Part II, I discussed how industry and education need to change in order to ensure the survival of the profession.

Part III: Adaptation Through Action

Like most Gen X kids, I grew up with a lot of freedom to roam. By fifth grade, I was regularly out of the house. My friends and I would go to an arcade in San Francisco’s Fisherman’s Wharf called The Doghouse, where naturally, they served hot dogs alongside their Joust and TRON cabinets. But we would invariably go to the Taco Bell across the street for cheap pre-dinner eats. In seventh grade—this is 1986—I walked by a ComputerLand on Van Ness Avenue and noticed a little beige computer with a built-in black and white CRT. The Macintosh screen was actually pale blue and black, but more importantly, showed MacPaint. It was my first exposure to creating graphics on a computer, which would eventually become my career.

My former colleague from Organic, Christian Haas—now ECD at YouTube—has been experimenting with AI video generation recently. He’s made a trilogy of short films called AI Jobs.

Play

You can watch part one above 👆, but don’t sleep on parts two and three.

Haas put together a “behind the scenes” article explaining his process. It’s fascinating and I’ll want to play with video generation myself at some point.

I started with a rough script, but that was just the beginning of a conversation. As I started generating images, I was casting my characters and scouting locations in real time. What the model produced would inspire new ideas, and I would rewrite the script on the fly. This iterative loop continued through every stage. Decisions weren’t locked in; they were fluid. A discovery made during the edit could send me right back to “production” to scout a new location, cast a new character and generate a new shot. This flexibility is one of the most powerful aspects of creating with Gen AI.

It’s a wonderful observation Haas has made—the workflow enabled by gen AI allows for more creative freedom. In any creative endeavor where the production of the final thing is really involved and utilizes a significant amount of labor and materials, be it a film, commercial photography, or software, planning is a huge part. We work hard to spec out everything before a crew of a hundred shows up on set or a team of highly-paid engineers start coding. With gen AI, as shown here with Google’s Veo 3, you have more room for exploration and expression.

UPDATE: I came across this post from Rory Flynn after I published this. He uses diagrams to direct Veo 3.

preview-1754327232920.jpg

Behind the Prompts — The Making of "AI Jobs"

Christian Haas created the first film with the simple goal of learning to use the tools. He didn’t know if it would yield anything worth watching but that was not the point.

linkedin.com iconlinkedin.com

For the past year, CPG behemoth Unilever has been “working with marketing services group Brandtech to build up its Beauty AI Studio: a bespoke, in-house system inside its beauty and wellbeing business. Now in place across 18 different markets (the U.S. and U.K. among them), the studio is being used to make assets for paid social, programmatic display inventory and e-commerce usage across brands including Dove Intensive Repair, TRESemme Lamellar Shine and Vaseline Gluta Hya.”

Sam Bradley, writing in Digiday:

The system relies on Pencil Pro, a generative AI application developed by Brandtech Group. The tool draws on several large language models (LLMs), as well as API access to Meta and TikTok for effectiveness measurement. It’s already used by hearing-care brand Amplifon to rapidly produce text and image assets for digital ad channels.

In Unilever’s process, marketers use prompts and their own insights about target audiences to generate images and video based on 3D renders of each product, a practice sometimes referred to as “digital twinning.” Each brand in a given market is assigned a “BrandDNAi” — an AI tool that can retrieve information about brand guidelines and relevant regulations and that provides further limitations to the generative process.

So far, they haven’t used this system to generate AI humans. Yet.

Inside Unilever’s AI beauty marketing assembly line — and its implications for agencies

The CPG giant has created an AI-augmented in-house production system. Could it be a template for others looking to bring AI in house?

digiday.com icondigiday.com
Human chain of designers supporting each other to reach laptops and design tools floating above them, illustrating collaborative mentorship and knowledge transfer in the design industry.

Why Young Designers Are the Antidote to AI Automation

In Part I of this series, I wrote about the struggles recent grads have had finding entry-level design jobs and what might be causing the stranglehold on the design job market.

Part II: Building New Ladders

When I met Benedict Allen, he had just finished with Portfolio Review a week earlier. That’s the big show all the design students in the Graphic Design program at San Diego City College work toward. It’s a nice event that brings out the local design community where seasoned professionals review the portfolios of the graduating students.

Allen was all smiles and relief. “I want to dabble in different aspects of design because the principles are generally the same.” He goes on to mention how he wants to start a fashion brand someday, DJ, try 3D. “I just want to test and try things and just have fun! Of course, I’ll have my graphic design job, but I don’t want that to be the end. Like when the workday ends, that’s not the end of my creativity.” He was bursting with enthusiasm.

Luke Wroblewski, writing in his blog:

Across several of our companies, software development teams are now “out ahead” of design. To be more specific, collaborating with AI agents (like Augment Code) allows software developers to move from concept to working code 10x faster. This means new features become code at a fast and furious pace.

When software is coded this way, however, it (currently at least) lacks UX refinement and thoughtful integration into the structure and purpose of a product. This is the work that designers used to do upfront but now need to “clean up” afterward. It’s like the development process got flipped around. Designers used to draw up features with mockups and prototypes, then engineers would have to clean them up to ship them. Now engineers can code features so fast that designers are ones going back and cleaning them up.

This is what I’ve been secretly afraid of. That we would go back to the times when designers were called in to do cleanup. Wroblewski says:

Instead of waiting for months, you can start playing with working features and ideas within hours. This allows everyone, whether designer or engineer, an opportunity to learn what works and what doesn’t. At its core rapid iteration improves software and the build, use/test, learn, repeat loop just flipped, it didn’t go away.

Yeah, or the feature will get shipped this way and be stuck this way because startups move fast and move on.

My take is that as designers, we need to meet the moment and figure out how to build design systems and best practices into the agentic workflows our developer counterparts are using.

preview-1753725448535.png

AI Has Flipped Software Development

For years, it's been faster to create mockups and prototypes of software than to ship it to production. As a result, software design teams could stay "ahead" of...

lukew.com iconlukew.com

In many ways, this excellent article by Kaustubh Saini for Final Round AI’s blog is a cousin to my essay on the design talent crisis. But it’s about what happens when people “become” developers and only know vibe coding.

The appeal is obvious, especially for newcomers facing a brutal job market. Why spend years learning complex programming languages when you can just describe what you want in plain English? The promise sounds amazing: no technical knowledge required, just explain your vision and watch the AI build it.

In other words, these folks don’t understand the code and, well, bad things can happen.

The most documented failure involves an indie developer who built a SaaS product entirely through vibe coding. Initially celebrating on social media that his “saas was built with Cursor, zero hand written code,” the story quickly turned dark.

Within weeks, disaster struck. The developer reported that “random things are happening, maxed out usage on api keys, people bypassing the subscription, creating random shit on db.” Being non-technical, he couldn’t debug the security breaches or understand what was going wrong. The application was eventually shut down permanently after he admitted “Cursor keeps breaking other parts of the code.”

This failure illustrates the core problem with vibe coding: it produces developers who can generate code but can’t understand, debug, or maintain it. When AI-generated code breaks, these developers are helpless.

I don’t foresee something this disastrous with design. I mean, a newbie designer wielding an AI-enabled Canva or Figma can’t tank a business alone because the client will have eyes on it and won’t let through something that doesn’t work. It could be a design atrocity, but it’ll likely be fine.

This *can *happen to a designer using vibe coding tools, however. Full disclosure: I’m one of them. This site is partially vibe-coded. My Severance fan project is entirely vibe-coded.

But back to the idea of a talent crisis. In the developer world, it’s already happening:

The fundamental problem is that vibe coding creates what experts call “pseudo-developers.” These are people who can generate code but can’t understand, debug, or maintain it. When AI-generated code breaks, these developers are helpless.

In other words, they don’t have the skills necessary to be developers because they can’t do the basics. They can’t debug, don’t understand architecture, have no code review skills, and basically have no fundamental knowledge of what it means to be a programmer. “They miss the foundation that allows developers to adapt to new technologies, understand trade-offs, and make architectural decisions.”

Again, assuming our junior designers have the requisite fundamental design skills, not having spent time developing their craft and strategic skills through experience will be detrimental to them and any org that hires them.

preview-1753377392986.jpg

How AI Vibe Coding Is Destroying Junior Developers' Careers

New research shows developers think AI makes them 20% faster but are actually 19% slower. Vibe coding is creating unemployable pseudo-developers who can't debug or maintain code.

finalroundai.com iconfinalroundai.com
Illustration of people working on laptops atop tall ladders and multi-level platforms, symbolizing hierarchy and competition, set against a bold, abstract sunset background.

The Design Industry Created Its Own Talent Crisis. AI Just Made It Worse.

This is the first part in a three-part series about the design talent crisis. Read Part II and Part III.

Part I: The Vanishing Bottom Rung

Erika Kim’s path to UX design represents a familiar pandemic-era pivot story, yet one that reveals deeper currents about creative work and economic necessity. Armed with a 2020 film and photography degree from UC Riverside, she found herself working gig photography—graduations, band events—when the creative industries collapsed. The work satisfied her artistic impulses but left her craving what she calls “structure and stability,” leading her to UX design. The field struck her as an ideal synthesis, “I’m creating solutions for companies. I’m working with them to figure out what they want, and then taking that creative input and trying to make something that works best for them.”

Since graduating from the interaction design program at San Diego City College a year ago, she’s had three internships and works retail part-time to pay the bills. “I’ve been in survival mode,” she admits. On paper, she’s a great candidate for any junior position. Speaking with her reveals a very thoughtful and resourceful young designer. Why hasn’t she been able to land a full-time job? What’s going on in the design job market? 

Retro-style robot standing at a large control panel filled with buttons, switches, and monitors displaying futuristic data.

The Era of the AI Browser Is Here

For nearly three years, Arc from The Browser Company has been my daily driver. To be sure, there was a little bit of a learning curve. Tabs disappeared after a day unless you pinned them. Then they became almost like bookmarks. Tabs were on the left side of the window, not at the top. Spaces let me organize my tabs based on use cases like personal, work, or finances. I could switch between tabs using control-Tab and saw little thumbnails of the pages, similar to the app switcher on my Mac. Shift-command-C copied the current page’s URL. 

All these little interface ideas added up to a productivity machine for web jockeys like myself. And so, I was saddened to hear in May that The Browser Company stopped actively developing Arc in favor of a new AI-powered browser called Dia. (They are keeping Arc updated with maintenance releases.)

They had started beta-testing Dia with college students first and just recently opened it up to Arc members. I finally got access to Dia a few weeks ago. 

Stephanie Tyler, in a great essay about remembering what we do as designers:

In an age where AI can generate anything, the question is no longer ‘can it be made?’ but ‘is it worth making?’ The frontier isn’t volume—it’s discernment. And in that shift, taste has become a survival skill.

And this is my favorite passage, because this is how I think about this blog and my newsletter.

There will always be creators. But the ones who stand out in this era are also curators. People who filter their worldview so cleanly that you want to see through their eyes. People who make you feel sharper just by paying attention to what they pay attention to.

Curation is care. It says: I thought about this. I chose it. I didn’t just repost it. I didn’t just regurgitate the trending take. I took the time to decide what was worth passing on.

That’s rare now. And because it’s rare, it’s valuable.

We think of curation as a luxury. But it’s actually maintenance. It’s how you care for your mind. Your attention. Your boundaries.

This blog represents my current worldview, what I’m interested in and exploring. What I’m thinking about now.

preview-1752706649473.png

Taste Is the New Intelligence

Why curation, discernment, and restraint matter more than ever

wildbarethoughts.com iconwildbarethoughts.com

This is a really well-written piece that pulls the AI + design concepts neatly together. Sharang Sharma, writing in UX Collective:

As AI reshapes how we work, I’ve been asking myself, it’s not just how to stay relevant, but how to keep growing and finding joy in my craft.

In my learning, the new shift requires leveraging three areas

  1. AI tools: Assembling an evolving AI design stack to ship fast
  2. AI fluency: Learning how to design for probabilistic systems
  3. Human-advantage: Strengthening moats like craft, agency and judgment to stay ahead of automation

Together with strategic thinking and human-centric skills, these pillars shape our path toward becoming an AI-native designer.

Sharma connects all the crumbs I’ve been dropping this week:

preview-1752771124483.jpeg

AI tools + AI fluency + human advantage = AI-native designer

From tools to agency, is this what it would take to thrive as a product designer in the AI era?

uxdesign.cc iconuxdesign.cc

From UX Magazine:

Copilots helped enterprises dip their toes into AI. But orchestration platforms and tools are where the real transformation begins — systems that can understand intent, break it down, distribute it, and deliver results with minimal hand-holding.

Think of orchestration as how “meta-agents” are conducting other agents.

The first iteration of AI in SaaS was copilots. They were like helpful interns eagerly awaiting your next command. Orchestration platforms are more like project managers. They break down big goals into smaller tasks, assign them to the right AI agents, and keep everything coordinated. This shift is changing how companies design software and user experiences, making things more seamless and less reliant on constant human input.

For designers and product teams, it means thinking about workflows that cross multiple tools, making sure users can trust and control what the AI is doing, and starting small with automation before scaling up.

Beyond Copilots: The Rise of the AI Agent Orchestration Platform

AI agent orchestration platforms are replacing simple copilots, enabling enterprises to coordinate autonomous agents for smarter, more scalable workflows.

uxmag.com iconuxmag.com

Let’s stay on the train of designing AI interfaces for a bit. Here’s a piece by Rob Chappell in UX Collective where he breaks down how to give users control—something I’ve been advocating—when working with AI.

AI systems are transforming the structure of digital interaction. Where traditional software waited for user input, modern AI tools infer, suggest, and act. This creates a fundamental shift in how control moves through a experience or product — and challenges many of the assumptions embedded in contemporary UX methods.

The question is no longer: “What is the user trying to do?”

The more relevant question is: “Who is in control at this moment, and how does that shift?”

Designers need better ways to track how control is initiated, shared, and handed back — focusing not just on what users see or do, but on how agency is negotiated between human and system in real time.

Most design frameworks still assume the user is in the driver’s seat. But AI is changing the rules. The challenge isn’t just mapping user flows or intent—it’s mapping who holds the reins, and how that shifts, moment by moment. Designers need new tools to visualize and shape these handoffs, or risk building systems that feel unpredictable or untrustworthy. The future of UX is about negotiating agency, not just guiding tasks.

preview-1752705140164.png

Beyond journey maps: designing for control in AI UX

When systems act on their own, experience design is about balancing agency — not just user flow

uxdesign.cc iconuxdesign.cc

Vitaly Friedman writes a good primer on the design possibilities for users to interact with AI features. As AI capabilities become more and more embedded in the products designers make, we have to become facile in manipulating AI as material.

Many products are obsessed with being AI-first. But you might be way better off by being AI-second instead. The difference is that we focus on user needs and sprinkle a bit of AI across customer journeys where it actually adds value.

preview-1752639762962.jpg

Design Patterns For AI Interfaces

Designing a new AI feature? Where do you even begin? From first steps to design flows and interactions, here’s a simple, systematic approach to building AI experiences that stick.

smashingmagazine.com iconsmashingmagazine.com

Speaking of prompt engineering, apparently, there’s a new kind in town called context engineering.

Developer Philipp Schmid writes:

What is context engineering? While “prompt engineering” focuses on crafting the perfect set of instructions in a single text string, context engineering is a far broader. Let’s put it simply: “Context Engineering is the discipline of designing and building dynamic systems that provides the right information and tools, in the right format, at the right time, to give a LLM everything it needs to accomplish a task.”

preview-1752639352021.jpg

The New Skill in AI is Not Prompting, It's Context Engineering

Context Engineering is the new skill in AI. It is about providing the right information and tools, in the right format, at the right time.

philschmid.de iconphilschmid.de

Since its debut at Config back in May, Figma has steadily added practical features to Figma Make for product teams. Supabase integration now allows for authentication, data storage, and file uploads. Designers can import design system libraries, which helps maintain visual consistency. Real-time collaboration has improved, giving teams the ability to edit code and prototypes together. The tool now supports backend connections for managing state and storing secrets. Prototypes can be published to custom domains. These changes move Figma Make closer to bridging the gap between design concepts and advanced prototypes.

In my opinion, there’s a stronger relationship between Sites and Make than there is Make and Design. The Make-generated code may be slightly better than when Sites debuted, but it is still not semantic.

Anyhow, I think Make is great for prototyping and it’s convenient to have it built right into Figma. Julius Patto, writing in UX Collective:

Prompting well in Figma Make isn’t about being clever, it’s about being clear, intentional, and iterative. Think of it as a new literacy in the design toolkit: the better you get at it, the more you unlock AI’s potential without losing your creative control.

preview-1752622395695.jpeg

How to prompt Figma Make’s AI better for product design

Learn how to use AI in Figma Make with UX intention, from smarter prompts to inclusive flows that reflect real user needs.

uxdesign.cc iconuxdesign.cc

In case you missed it, there’s been a major shift in the AI tool landscape.

On Friday, OpenAI’s $3 billion offer to acquire AI coding tool Windsurf expired. Windsurf is the Pepsi to Cursor’s Coke. They’re both IDEs, the programming desktop application that software developers use to code. Think of them as supercharged text editors but with AI built in.

On Friday evening, Google announced that it had hired Windsurf’s CEO Varun Mohan, co-founder Douglas Chen, and several key researchers for $2.4 billion.

On Monday, Cognition, the company behind Devin, the self-described “AI engineer” announced that it had acquired Windsurf for an undisclosed sum, but noting that its remaining 250 employees will “participate financially in this deal.”

Why does this matter to designers?

The AI tools market is changing very rapidly. With AI helping to write these applications, their numbers and features are always increasing—or in this case, maybe consolidating. Choose wisely before investing too deeply into one particular tool. The one piece of advice I would give here is to avoid lock-in. Don’t get tied to a vendor. Ensure that your tool of choice can export your work—the code.

Jason Lemkin has more on the business side of things and how it affects VC-backed startups.

preview-1752536770924.png

Did Windsurf Sell Too Cheap? The Wild 72-Hour Saga and AI Coding Valuations

The last 72 hours in AI coding have been nothing short of extraordinary. What started as a potential $3 billion OpenAI acquisition of Windsurf ended with Google poaching Windsurf’s CEO and co…

saastr.com iconsaastr.com

Ted Goas, writing in UX Collective:

I predict the early parts of projects, getting from nothing to something, will become shared across roles. For designers looking to branch out, code is a natural next step. I see a future where we’re fixing small bugs ourselves instead of begging an engineer, implementing that animation that didn’t make the sprint but you know would absolutely slap, and even building simple features when engineering resources are tight.

Our new reality is that anyone can make a rough draft.

But that doesn’t mean those drafts are good. That’s where our training and taste come in.

I think Goas is right and it echoes the AI natives post by Elena Verna. I wrote a little more extensively in my newsletter over the weekend.

preview-1752467928143.jpg

Designers: We’ll all be design engineers in a year

And that’s a good thing.

uxdesign.cc iconuxdesign.cc

Miquad Jaffer, a product leader at OpenAI shares his 4D method on how to build AI products that users want. In summary, it’s…

  • Discover: Find and prioritize real user pain points and friction in daily workflows.
  • Design: Make AI features invisible and trustworthy, fitting naturally into users’ existing habits.
  • Develop: Build AI systematically, with robust evaluation and clear plans for failures or edge cases.
  • Deploy: Treat each first use like a product launch, ensuring instant value and building user trust quickly.
preview-1752209855759.png

OpenAI Product Leader: The 4D Method to Build AI Products That Users Actually Want

An OpenAI product leader's complete playbook to discover real user friction, design invisible AI, plan for failure cases, and go from "cool demo" to "daily habit"

creatoreconomy.so iconcreatoreconomy.so