Skip to content

218 posts tagged with “product design”

Tommaso Nervegna, a Design Director at Accenture Song, gives one of the clearest practitioner accounts I’ve seen of what using Claude Code as a designer looks like day to day.

The guide is detailed—installation steps, terminal commands, deployment. This is essential reading for any designer interested in Claude Code. But for me, the interesting part isn’t the how-to. It’s his argument that raw AI coding tools aren’t enough without structure on top:

Claude Code is powerful, but without proper context engineering, it degrades as the conversation gets longer.

Anyone who’s used these tools seriously has experienced this. You start a session and the output is sharp. Forty minutes in, it’s forgotten your constraints and is hallucinating component names. Nervegna uses a meta-prompting framework called Get Shit Done that breaks work into phases with fresh contexts—research, planning, execution, verification—each getting its own 200K token window. No accumulated garbage.

The framework ends up looking a lot like good design process applied to AI:

Instead of immediately generating code, it asks:

“What happens when there’s no data to display?” “Should this work on mobile?” “What’s the error state look like?” “How do users undo this action?”

Those are the questions a senior designer asks in a review. Nervegna calls it “spec-driven development,” but it’s really the discipline of defining the problem before jumping to solutions—something our profession has always preached and often ignored when deadlines hit.

Nervegna again:

This is spec-driven development, but the spec is generated through conversation, not written in Jira by a project manager.

The specification work that used to live in PRDs and handoff docs is happening conversationally now, between a designer and an AI agent. The designer’s value is in the questions asked before any code gets written.

Terminal-style window reading "CLAUDE CODE FOR DESIGNERS — A PRACTICAL GUIDE" over coral background with black design-tool icons.

Claude Code for Designers: A Practical Guide

A Step-by-Step Guide to Designing and Shipping with Claude Code

nervegna.substack.com iconnervegna.substack.com

Earlier this week I published an essay on how product design is changing, and one of the sources I referenced was Jan Tegze’s piece on job shrinkage. I quoted him on the orchestrator model—using agents to create new capabilities rather than speeding up old tasks. But there’s another section of his article that deserves its own post. It’s the part nobody wants to talk about.

Jan Tegze, writing for his Thinking Out Loud newsletter:

Many people currently doing “strategic” knowledge work aren’t actually that strategic.

When agents started handling the execution layer, everyone assumed humans would naturally move up to higher-order thinking. Strategy, judgment, and vision.

But a different reality is emerging—many senior people with years of experience can’t actually operate at that level. Their expertise was mostly pattern matching and process execution dressed up in strategic language.

That’s a hard paragraph to read if you’re a senior IC or a manager who’s built a career on being thorough and diligent. Tegze isn’t being cruel—he’s describing a structural problem. We built evaluation systems that rewarded execution and called it strategy.

He shares a quote from a CEO of a mid-sized Canadian company:

“We’re discovering that our senior people and our junior people are equally lost when we ask them what we should do, not just how to do it. The seniors are just more articulate about their uncertainty.”

Tegze illustrates the pattern with a story about a friend he calls Jane—a senior research analyst billing at $250/hour at a consulting firm where they deployed an AI research agent:

The agent could do Jane’s initial research in 90 minutes—it would scan thousands of sources, identify patterns, generate a first-draft report.

Month one: Jane was relieved and thought she could focus on high-value synthesis work. She’d take the agent’s output and refine it, add strategic insights, make it client-ready.

Month three: A partner asked her, “Why does this take you a week now? The AI gives us 80% of what we need in an hour. What’s the other 20% worth?”

Jane couldn’t answer clearly. Because sometimes the agent’s output only needed light editing. Sometimes her “strategic insights” were things the agent had already identified, just worded differently.

The firm restructured Jane into a “Quality Reviewer” role at $150/hour. Six months later she left. They replaced her with two junior analysts at $65K each who, with the AI, were 85% as effective.

And then the kicker:

You often hear from AI vendors that, thanks to their AI tools, people can focus on higher-value work. But when pressed on what that meant specifically, they’d go vague. Strategic thinking, client relationships, creative problem solving.

Nobody could define what higher-value work actually looked like in practice. Nobody could describe the new role. So they defaulted to the only thing they could measure: cost reduction.

Tegze again:

We promoted people for the wrong reasons. We confused “does the work well” with “thinks strategically about the work.”

Tegze’s framing of the orchestrator model is the most useful I’ve seen—stop defending your current role and start building one that didn’t exist six months ago. But this section on the strategy gap is worth sitting with on its own. The automation isn’t just changing what we do. It’s revealing what we were actually good at all along.

Person in a suit standing on an isolated ice floe holding a resume aloft, surrounded by scattered icebergs.

Your Job Isn’t Disappearing. It’s Shrinking Around You in Real Time

AI isn’t taking your job. It’s making your expertise worthless while you watch. The three things everyone tries that fail, and the one strategy that actually works.

newsletter.jantegze.com iconnewsletter.jantegze.com

In a Jason Lemkin piece on SaaStr, Intercom CPO Paul Adams describes what happened to his design team over the last 18 months:

Every single designer at Intercom now ships code to production. Zero did 18 months ago. The mandate was clear: this is now part of your job. If you don’t like it, find somewhere that doesn’t require it, and they’ll hire designers who love the idea.

Not a pilot program nor an optional workshop. It was a mandate. Adams basically said, “This is your job now, or it isn’t your job here anymore.” (I do note the language here is indifferent to the real human cost.)

But the designers-shipping-code mandate is one piece of a larger consolidation. Adams applies a simple test across the entire org: what would a brand new startup incorporated today do here?

Would they have separate product marketers and content marketers? Or is that the same job now? Would they have both product managers and product designers as distinct roles? The answer usually points to consolidation, not specialization.

There it is again, the compression of roles.

But Adams isn’t just asking the question. He took over two-thirds of Intercom’s marketing six months ago and rebuilt it from scratch—teams, roadmaps, calendars, gone.

All of the above is a glimpse of what Matt Shumer was talking about in “Something Big Is Happening.”

The way the product gets built has changed too. Adams describes Intercom’s old process versus the new one:

The old way: Pick a job to be done → Listen to customers → Design a solution → Build and ship. Execution was certain. Technology was stable. Design was the hard part. The new way: Ask what AI makes possible → Prototype to see if you can build it reliably → Build the UX later → Ship → Learn at scale.

“Build the UX later” is a scary thought, isn’t it? In many ways, we must unlearn what we have learned, to quote Yoda. Honestly though, that’s easier said than done and is highly dependent on how forgiving your userbase is.

Why Most B2B Companies Are Failing at AI (And How to Avoid It) with Intercom’s CPO

Why Most B2B Companies Are Failing at AI (And How to Avoid It) with Intercom’s CPO

How Intercom Bet Everything on AI—And Built Fin to 1M+ Resolutions Per Week Paul Adams is Chief Product Officer at Intercom, leading Product Management, Product Design, Data Science, and Research. …

saastr.com iconsaastr.com

Jeff Bezos introduced the two-pizza rule in 2002: if a team needs more than two pizzas to eat, it’s too big. It became gospel for how to organize product teams. Dan Shipper thinks the number just got a lot smaller:

We have four software products, each run by a single person. Ninety-nine percent of our code is written by AI agents. Overall, we have six business units with just 20 full-time employees.

Two pizzas down to two slices. Two slices per person. One person per product. And these aren’t demos or side projects. Shipper’s numbers on one of them:

Monologue, our smart dictation app run by Naveen Naidu, is used about 30,000 times a day to transcribe 1.5 million words. The codebase totals 143,000 lines of code and Naveen’s written almost every single line of it himself with the help of Codex and Opus.

A year ago that would have been a team of four or five engineers plus a PM plus a designer. Shipper himself built a separate product—a Markdown editor—and describes the compression:

An editor like this would have previously taken 3-4 engineers six months to build. Instead, I made it in my spare time.

“In my spare time” is doing a lot of work in that sentence. This is what the small teams, big leverage argument looks like when you stop theorizing and start counting.

Two classical statue profiles exchange pepperoni pizza slices over a blue sky, with a small temple in the background.

The Two-slice Team

Amazon’s “two-pizza rule” worked for the past twenty-four years. We need a new heuristic for the next twenty-four.

every.to iconevery.to

Steve Yegge has been talking to nearly 40 people at Anthropic over the past four months. What he describes looks nothing like the feature factory world that NN/g catalogs. No 47-page alignment documents. No 14-meeting coordination cycles. Instead, campfires:

Everyone sits around a campfire together, and builds. The center of the campfire is a living prototype. There is no waterfall. There is no spec. There is a prototype that simply evolves, via group sculpting, into the final product: something that finally feels right. You know it when you finally find it.

As evidence of this, Anthropic, from what I’m told, does not produce an operating plan ahead more than 90 days, and that is their outermost planning cycle. They are vibing, on the shortest cycles and fastest feedback loops imaginable for their size.

No roadmap beyond 90 days. They group-sculpt a living prototype. Someone told Yegge that Claude Cowork shipped 10 days after the idea first came up. Ten days. A small team with real ownership, shipping at the speed the tools now allow.

Yegge argues this works partly because of a cultural requirement most companies would struggle with. He describes a three-person startup called SageOx that operates the same way:

A lot of engineers like to work in relative privacy, or even secrecy. They don’t want people to see all the false starts, struggles, etc. They just want people to see the finished product. It’s why we have git squash and send dignified PRs instead of streaming every compile error to our entire team.

But my SageOx friends Ajit and Ryan actually want the entire work stream to be public, because it’s incredibly valuable for forensics: figuring out exactly how and why a teammate, human or agent, got to a particular spot. It’s valuable because merging is a continuous activity and the forensics give the models the tools and context they need to merge intelligently.

So at SageOx they all see each other’s work all the time, and act on that info. It’s like the whole team is pair programming at once. They course-correct each other in real time.

Yegge calls this “the death of the ego.” Everyone sees your mistakes, your wrong turns, how fast you work. Nothing to hide. Most designers and engineers I know would be deeply uncomfortable with that. We like to polish before we share. We present finished comps, not the 13 variations we tried and abandoned.

But if the campfire model is where things are heading—and the speed advantage over the feature factory is hard to argue with—then the culture has to change before the process can. That’s the part nobody wants to talk about.

Five bees in goggles on a wooden stage assembling a glowing steampunk orb, surrounded by tools, blueprints, gears and theater seats

The Anthropic Hive Mind

As you’ve probably noticed, something is happening over at Anthropic. They are a spaceship that is beginning to take off.

steve-yegge.medium.com iconsteve-yegge.medium.com

I’ve seen this at every company past a certain size: you spot a disjointed UX problem across the product, you know what needs to happen, and then you spend three months in alignment meetings trying to get six teams to agree on a button style.

A recent piece from Laura Klein at Nielsen Norman Group examines why most product teams aren’t actually empowered, despite what the org chart claims. Klein on fragmentation:

When you have dozens of empowered teams, each optimizing its own metrics and building its own features, you get a product that feels like it was designed by dozens of different companies. One team’s area uses a modal dialog for confirmations. Another team uses an inline message. A third team navigates to a new page. The buttons say Submit in one place, Save in another, and Continue in a third. The tone of the microcopy varies wildly from formal to casual.

Users don’t see teams. They don’t see component boundaries. They just see a confusing, inconsistent product that seems to have been designed by people who never talked to each other, because, in a sense, it was.

Each team was empowered to make the best decisions for their area, and it did! But nobody was empowered to maintain coherence across the whole experience.

That last line is the whole problem. “Coherence,” as Klein calls it, is a design leadership responsibility, and it gets harder as AI lets individual teams ship faster without coordinating with each other. If every squad can generate production UI in hours instead of weeks, the fragmentation described here accelerates. Design systems become the only thing standing between your product and a Frankenstein experience.

The article is also sharp on what happens to PMs inside this dysfunction:

Picture a PM who spends 70% of her time in meetings coordinating with other teams, getting buy-in for a small change, negotiating priorities, trying to align roadmaps, escalating conflicts, chasing down dependencies, and attending working groups created to solve coordination problems. She spends a tiny fraction of her time with users. The rest is spent writing documents that explain her team’s work to other teams, updating roadmaps, reporting status, and attending planning meetings. She was hired to be a strategic product thinker, but she’s become a project manager, focused entirely on logistics and coordination.

I’ve watched this happen to PMs I’ve worked with. The coordination tax eats the strategic work. Marty Cagan calls this “product management theater”—a surplus of PMs who function as overpaid project managers. If AI compresses the engineering work but the coordination overhead stays the same, that ratio gets even more lopsided.

The fix is smaller teams with real ownership and strong design systems that enforce coherence without requiring 14 alignment meetings. But that requires organizational courage most companies don’t have.

Why Most Product Teams Aren't Really Empowered' headline with three hands untangling a ball of dark-blue yarn and NN/G logo.

Why Most Product Teams Aren’t Really Empowered

Although product teams say they’re empowered, many still function as feature factories and must follow orders.

nngroup.com iconnngroup.com

In my previous post about Google Reader, I wrote about Chris Wetherell’s original vision—a polymorphic information tool, not a feed reader. But even Google Reader ended up as a three-pane inbox. That layout didn’t originate with Reader, though. It’s older than that.

Terry Godier traces that layout to a single decision. In 2002, Brent Simmons released NetNewsWire, the first RSS reader that looked like an email client. Godier asked him why, and Simmons’ answer was pragmatic:

“I was actually thinking about Usenet, not email, but whatever. The question I asked myself then was how would I design a Usenet app for (then-new) Mac OS X in the year 2002?”

“The answer was pretty clear to me: instead of multiple windows, a single window with a sidebar, list of posts, and detail view.”

A reasonable choice in 2002. But then Godier shares Simmons reflecting on why everyone kept copying him twenty-two years later:

“But every new RSS reader ought to consider not being yet another three-paned-aggregator. There are surely millions of users who might prefer a river of news or other paradigms.”

“Why not have some fun and do something new, or at least different?”

The person who designed the original paradigm was asking, twenty-two years later, why everyone was still copying him.

Godier’s argument is that when Simmons borrowed the inbox layout, he inadvertently imported the inbox’s psychology. Unread counts. Bold text for new items. A backlog that accumulates. The visual language of social debt, applied to content nobody sent you:

When you dress a new thing in old clothes, people don’t just learn the shape. They inherit the feelings, the assumptions, the emotional weight. You can’t borrow the layout of an inbox without also borrowing some of its psychology.

He calls this “phantom obligation”—the guilt you feel for something no one asked you to do. And I’ll admit, I feel it. I open Inoreader every morning and when that number isn’t zero, some part of my brain registers it as a task. It shouldn’t. Nobody is waiting. But the interface says otherwise.

Godier’s best line is the one that frames the whole piece:

We’ve been laundering obligation. Each interface inherits legitimacy from the last, but the social contract underneath gets hollowed out.

The red dot on a game has the same visual weight as a text from your kid. We kept the weight and dropped the reason.

PHANTOM OBLIGATION — noun: The guilt you feel for something no one asked you to do.

Phantom Obligation

Why RSS readers look like email clients, and what that’s doing to us.

terrygodier.com iconterrygodier.com

Every article I share on this blog starts the same way: in my RSS reader. I use Inoreader to follow about a hundred feeds—design blogs, tech publications, and independent newsletters. Every morning I scroll through what’s new, mark what’s interesting, and the best stuff eventually becomes a link post here. It’s not a fancy workflow. It’s an RSS reader and a notes app. But it works because the format works.

This is a 2023 article, but I’m fascinated by it because Google Reader was so influential in my life. David Pierce, writing for The Verge, chronicles how Google Reader came to be and why Google killed it.

Chris Wetherell, who built the first prototype, wasn’t thinking about an RSS reader. He was thinking about a universal information layer:

“I drew a big circle on the whiteboard,” he recalls. “And I said, ‘This is information.’ And then I drew spokes off of it, saying, ‘These are videos. This is news. This is this and that.’” He told the iGoogle team that the future of information might be to turn everything into a feed and build a way to aggregate those feeds.

Jason Shellen, the product manager, saw the same thing:

“We were trying to avoid saying ‘feed reader,’” Shellen says, “or reading at all. Because I think we built a social product.”

Google couldn’t see it. Reader had 30 million users, many of them daily, but that was a rounding error by Google standards. Pierce captures the absurdity well:

Almost nothing ever hits Google scale, which is why Google kills almost everything.

So Google poured its resources into Google Plus instead. That product was dead within months of launch. Reader, the thing they killed to make room for it, had been a working social network the whole time. Jenna Bilotta, a designer on the team:

“They could have taken the resources that were allocated for Google Plus, invested them in Reader, and turned Reader into the amazing social network that it was starting to be.”

What gets me is that the vision Wetherell drew on that whiteboard—a single place to follow everything you care about, organized by your taste, shared with people you trust, and non-algorithmic—still doesn’t fully exist. RSS readers are the closest thing we have, and they’re good enough that I’ve built my entire reading and writing practice around one. But the curation layer Wetherell imagined is still unfinished.

Framed memorial reading IN LOVING MEMORY (2005–2013) with three colorful app icons, lit candles and white roses.

Who killed Google Reader?

Google Reader was supposed to be much more than a tool for nerds. But it never got the chance.

theverge.com icontheverge.com

Anthropic published a study that puts numbers to something I’ve been writing about in the design context for a while now. They ran a randomized controlled trial with 52 junior software engineers learning a new Python library. Half used AI assistance. Half coded by hand.

Judy Hanwen Shen and Alex Tamkin, writing for Anthropic Research:

Participants in the AI group scored 17% lower than those who coded by hand, or the equivalent of nearly two letter grades. Using AI sped up the task slightly, but this didn’t reach the threshold of statistical significance.

So the AI group didn’t finish meaningfully faster, but they understood meaningfully less. And the biggest gap was in debugging—the ability to recognize when code is wrong and figure out why. That’s the exact skill you need most when your job is to oversee AI-generated output.

The largest gap in scores between the two groups was on debugging questions, suggesting that the ability to understand when code is incorrect and why it fails may be a particular area of concern if AI impedes coding development.

This is the same dynamic I fear in design. When I wrote about the design talent crisis, educators like Eric Heiman told me “we internalize so much by doing things slower… learning through tinkering with our process, and making mistakes.” Bradford Prairie put it more bluntly: “If there’s one thing that AI can’t replace, it’s your sense of discernment for what is good and what is not good.” But discernment comes from reps, and AI is eating the reps.

The honest framing from Anthropic’s own researchers:

It is possible that AI both accelerates productivity on well-developed skills and hinders the acquisition of new ones.

Credit to Anthropic for publishing research that complicates the case for their own product. And the study’s footnote is worth noting: they used a chat-based AI assistant, not an agentic tool like Claude Code. Their expectation is that “the impacts of such programs on skill development are likely to be more pronounced.”

I can certainly attest that when I use Claude Code, I have no idea what’s going on!

The one bright spot: not all AI use was equal. Participants who asked conceptual questions and used AI to check their understanding scored well. The ones who delegated code generation wholesale scored worst. The difference was whether you were thinking alongside the tool or letting it think for you.

Cognitive effort—and even getting painfully stuck—is likely important for fostering mastery.

Getting painfully stuck. That’s the apprenticeship. That’s the grunt work. And it’s exactly what we’re optimizing away.

Stylized hand pointing to a white sheet with three horizontal rows of black connected dots on a beige background.

How AI assistance impacts the formation of coding skills

Anthropic is an AI safety and research company that’s working to build reliable, interpretable, and steerable AI systems.

anthropic.com iconanthropic.com

I recently spent some time to move my entire note-taking system away from Notion to Obsidian because the latter runs on Markdown files, which are text files. Why? Because AI runs on text.

And that is also the argument from Patrick Morgan. Your notes, your documented processes, your collected examples of what “good” looks like—if those live in plain text, AI can actually work with them. If they live in your head, or scattered across tools that don’t export, they’re invisible.

There’s a difference between having a fleeting conversation and collaborating on an asset you both work on. When your thinking lives in plain text — especially Markdown — it becomes legible not just to you, but to an AI that can read across hundreds of files, notice patterns, and act at scale.

I like that he frames this as scaffolding rather than some elaborate knowledge management system. He’s honest about the PKM fatigue most of us share:

Personal knowledge management is far from a new concept. Honestly, it’s a topic I started to ignore because too many people were trying to sell me on yet another “life changing” system. Even when I tried to jump through the hoops, it was all just too much for me for too little return. But now that’s changed. With AI, the value is much greater and the barrier to entry much lower. I don’t need an elaborate system. I just need to get my thinking in text so I can share it with my AI.

This is the part that matters for designers. We externalize visual thinking all the time—moodboards, style tiles, component libraries. But we rarely externalize the reasoning behind those decisions in a format that’s portable and machine-readable. Why did we choose that pattern? What were we reacting against? What does “good” look like for this particular problem?

Morgan’s practical recommendation is dead simple: three markdown files. One for process, one for taste, one for raw thinking. That’s it.

This is how your private thinking becomes shared context.

The designers who start doing this now will have documented judgment that AI can actually use.

Side profile of a woman's face merged with a vintage keyboard and monitor displaying a black-and-white mountain photo in an abstract geometric collage.

AI Runs on Text. So Should You.

Where human thinking and AI capability naturally meet

open.substack.com iconopen.substack.com

Many designers I’ve worked with want to get to screens as fast as possible. Open Figma, start laying things out, figure out the structure as they go. It works often enough that nobody questions it. But Daniel Rosenberg makes a case for why it shouldn’t be the default.

Rosenberg, writing for the Interaction Design Foundation, argues that the conceptual model—the objects users manipulate, the actions they perform, and the attributes they change—should be designed before anyone touches a screen:

Even before you sketch your first screen it is beneficial to develop a designer’s conceptual model and use it as the baseline for guiding all future interaction design decisions.

Rosenberg maps this to natural language. Objects are nouns. Actions are verbs. Attributes are adjectives. The way these elements relate to each other is the grammar of your interface. Get the grammar wrong and no amount of visual polish will save you.

His example is painfully simple. A tax e-sign system asked him to “ENTER a PIN” when he’d never used the system before. There was no PIN to enter. The action should have been “CREATE.” One wrong verb and a UX expert with 40 years of experience couldn’t complete the task. His accountant confirmed that dozens of clients had called thinking the system was broken.

Rosenberg on why this cascades:

A suboptimal decision on any lower layer will cascade through all the layers above. This is why designing the conceptual model grammar with the lowest cognitive complexity at the very start… is so powerful.

This is the part I want my team to internalize. When you jump straight to screens, you’re making grammar decisions implicitly—choosing verbs for buttons, deciding which objects to surface, grouping attributes in panels. You’re doing conceptual modeling whether you know it or not. The question is whether you’re doing it deliberately.

Article title "The MAGIC of Semantic Interaction Design" with small "Article" label and Interaction Design Foundation logo at bottom left.

The MAGIC of Semantic Interaction Design

Blame the user: me, a UX expert with more than 40 years of experience, who has designed more than 100 successful commercial products and evaluated the inadequate designs of nearly 1, 000 more.

interaction-design.org iconinteraction-design.org

Everyone wants to talk about the AI use case. Nobody wants to talk about the work that makes the use case possible.

Erika Flowers, who led NASA’s AI readiness initiative, has a great metaphor for this on the Invisible Machines podcast. Her family builds houses, and before they could install a high-tech steel roof, they spent a week building scaffolding, setting up tarps, rigging safety harnesses, positioning dumpsters for debris. The scaffolding wasn’t the job. But without it, the job couldn’t happen.

Flowers on where most organizations are with AI right now:

We are trying to just climb up on these roofs with our most high tech pneumatic nail gun and we got all these tools and stuff and we haven’t clipped off to our belay gear. We don’t have the scaffolding set up. We don’t have the tarps and the dumpsters to catch all the debris. We just want to get up there. That is the state of AI and transformation.

The scaffolding is the boring stuff: data integration, governance, connected workflows, organizational readiness. It’s context engineering at the enterprise level. Before any AI feature can do real work, someone has to make sure it has the right data, the right permissions, and the right place in a process. Nobody wants to fund that part.

But Flowers goes further. She argues we’re not just skipping the scaffolding—we’re automating the wrong things entirely. Her example: accounting software uses AI to help you build a spreadsheet faster, then you email it to someone who extracts the one number they actually needed. Why not just ask the AI for the number? We’re using new technology to speed up old workflows instead of asking whether the workflow should exist at all.

Then she gets to the interesting question—who’s supposed to design all of this?

I don’t think it exists necessarily with the roles that we have. It’s going to be a lot closer to Hollywood… producer, director, screenwriter. And I don’t mean as metaphors, I mean literally those people and how they think and how they do it because we’re in a post software era.

She lists therapists, psychologists, wedding planners, dance choreographers. People who know how to choreograph human interactions without predetermined inputs. That’s a different skill set than designing screens, and I think she’s onto something.

Why AI Scaffolding Matters More than Use Cases ft Erika Flowers

We’re in a moment when organizations are approaching agentic AI backwards, chasing flashy use cases instead of building the scaffolding that makes AI agents actually work at scale. Erika Flowers, who led NASA’s AI Readiness Initiative and has advised Meta, Google, Netflix, and Intuit, joins Robb and Josh for a frank and funny conversation about what’s broken in enterprise AI adoption. She dismantles the myth of the “big sexy AI use case” and explains why most AI projects fail before they start. The trio makes the case that we’re entering a post-software world, whether organizations are ready or not. Chapters - 0:09 - NASA AI Readiness Explained | Erica Flowers on Agentic AI & Runtimes 1:48 - Why the “Big Sexy AI Use Case” Is a Lie 2:42 - AI Didn’t Start with ChatGPT: What NASA Has Been Doing for 30 Years 4:24 - Why AI Runtimes Matter More Than Any Single Use Case 5:21 - The Hidden AI Problem: Legacy Data, Silos & Organizational Reality 7:13 - The Boring AI That Actually Works (And Why Enterprises Ignore It) 8:10 - The AI Arms Race Nobody Understands 9:22 - AI Scaffolding Explained: The Metaphor Every Leader Needs to Hear 12:12 - AI Readiness Is Cultural Change, Not Just Technology 14:38 - From Parking Lots to Companies: How Simple AI Agents Quietly Scale 17:01 - Why Most AI Features Feel Useless in Real Products 19:08 - Stop Automating Spreadsheets: Ask AI the Question Instead 25:06 - The Post-Software Era: Why Designers Aren’t Enough Anymore 28:33 - UI Is a Medium: How AI Will Absorb Interfaces Entirely 46:24 - Infinite Content, Human Creativity, and the Future After AI Listen and Check out Erika’s podcast, “Flower Power Hour”: https://open.spotify.com/show/15BTSl9fWiH3QTmVAYj6Fd Learn more about Erika at www.helloerikaflowers.com/ ---------- Support our show by supporting our sponsors! This episode is supported by OneReach.ai Forged over a decade of R&D and proven in 10,000+ deployments, OneReach.ai’s GSX is the first complete AI agent runtime environment (circa 2019) — a hardened AI agent architecture for enterprise control and scale. Backed by UC Berkeley, recognized by Gartner, and trusted across highly regulated industries, including healthcare, finance, government and telecommunications. A complete system for accelerating AI adoption - design, train, test, deploy, monitor, and orchestrate neurosymbolic applications (agents). Use any AI models - Build and deploy intelligent agents fast - Create guardrails for organizational alignment - Enterprise-grade security and governance Request free prototype: https://onereach.ai/prototype/?utm_source=youtube&utm_medium=social&utm_campaign=podcast_s6e12&utm_content=1 ---------- The revised and significantly updated second edition of our bestselling book about succeeding with AI agents, Age of Invisible Machines, is available everywhere: Amazon — https://bit.ly/4hwX0a5 #InvisibleMachines #Podcast #TechPodcast #AIPodcast #AI #AgenticAI #AIAgents #DigitalTransformation #AIReadiness #AIDeployment #AISoftware #AITransformation #AIAdoption #AIProjects #NASA #AgentRuntime #Innovation #AIUseCase

youtu.be iconyoutu.be

Every few months a new AI term drops and everyone scrambles to sound smart about it. Context engineering. RAG. Agent memory. MCP.

Tal Raviv and Aman Khan, writing for Lenny’s Newsletter, built an interactive piece that has you learn these concepts by doing them inside Cursor. It’s part article, part hands-on tutorial. But the best parts are when they strip the terms down to what they actually are:

Let that sink in: memory is just a text file prepended to every conversation. There’s no magic here.

That’s it. Agent memory, the thing that sounds like science fiction, is a text file that gets pasted at the top of every chat. Once you know that, you can design for it. You can think about what belongs in that file and what doesn’t, what’s worth the context window space and what’s noise.

They do the same with RAG:

RAG is a fancy term for “Before I start talking, I gotta go look everything up and read it first.” Despite the technical name, you’ve been doing it your whole life. Before answering a hard question, you look things up. Agents do the same.

Tool calling gets the same treatment. The agent reads a file, decides what to change, and uses a tool to make the edit. As Raviv and Khan point out, you’ve done search-and-replace in Word a hundred times.

Their conclusion ties it together:

Cursor is just an AI product like any other, composed of text, tools, and results flowing back into more text—except Cursor runs locally on our computer, so we can watch it work and learn. Once we were able to break down any AI product into these same building blocks, our AI product sense came naturally.

This matters for designers. You can’t design well for systems you don’t understand, and you can’t understand systems buried under layers of jargon. The moment someone tells you “memory is just a text file,” you can start asking the right design questions: what goes in it? Who controls it? How does the user know it’s working?

The whole piece is a step-by-step tutorial for PMs, but the underlying lesson is universal. Strip the mystique, see the mechanics, design for what’s actually there.

Two smiling illustrated men with orange watercolor background, caption "How to build" and highlighted text "AI product sense".

How to build AI product sense

The secret is using Cursor for non-technical work (inside: 75 free days of Cursor Pro to try this out!)

open.substack.com iconopen.substack.com

Daniel Miessler pulls an idea from a recent Karpathy interview that’s been rattling around in my head since I read it:

Humans collapse during the course of their lives. Children haven’t overfit yet. They will say stuff that will shock you because they’re not yet collapsed. But we [adults] are collapsed. We end up revisiting the same thoughts, we end up saying more and more of the same stuff, the learning rates go down, the collapse continues to get worse, and then everything deteriorates.

Miessler’s description of what this looks like in practice is uncomfortable:

How many older people do you know who tell the same stories and jokes over and over? Watch the same shows. Listen to the same five bands, and then eventually two. Their aperture slowly shrinks until they die.

I’ve seen this in designers. The ones who peaked early and never pushed past what worked for them. Their work from five years ago looks exactly like their work today. Same layouts, same patterns, same instincts applied to every problem regardless of context. They collapsed and didn’t notice.

Then Miessler, almost in passing:

This was a problem before AI. And now many are delegating even more of their thinking to a system that learns by crunching mediocrity from the internet. I can see things getting significantly worse.

If collapse is what happens when you stop seeking new inputs, then outsourcing your thinking to AI is collapse on fast-forward. You’re not building pattern recognition, you’re borrowing someone else’s average. The outputs look competent. They pass a first glance. But nothing in there surprises anyone, because the model optimizes for the most statistically probable next token.

Use AI to accelerate execution, not to replace the part where you actually have an idea.

Childhood → reading/exposure/tools/comedy → Renewal → Sustained Vitality. Side: Adult Collapse (danger: low entropy, repetition).

Humans Need Entropy

On Karpathy

danielmiessler.com icondanielmiessler.com

There’s a version of product thinking that lives in frameworks and planning docs. And then there’s the version that shows up when someone looks at a screen and immediately knows something is off. That second version—call it product sense, call it taste or judgement—comes from doing the work, not reading about it.

Peter Yang, writing in his Behind the Craft newsletter, shares 25 product beliefs from a decade at Roblox, Reddit, Amazon, and Meta. The whole list is worth reading, but a few items stood out.

On actually using your own product:

I estimate that less than 10% of PMs actually dogfood their product on a weekly basis. Use your product like a first-time user and write a friction log of how annoying the experience is. Nobody is too senior to test their own shit.

Ten percent. If that number is even close to accurate, it’s damning. You can’t develop good product judgment if you’re not paying attention to the thing you ship. And this applies to designers just as much as PMs.

Yang again, on where that judgment actually shows up:

Default states, edge cases, and good copy — these details are what separates a great product from slop. It doesn’t matter how senior you are, you have to give a damn about the tiniest details to ship something that you can be proud of.

Knowing that default states matter, knowing which edge cases to care about, knowing when copy is doing too much or too little—you can’t learn that from a framework. That’s pattern recognition from years of seeing what good looks like and what falls apart.

And on what qualifies someone to do this work:

Nobody cares about your FAANG pedigree or AI product certificate. Hire high agency people who have built great side projects or demonstrated proof of work. The only credential that matters is what you’ve shipped and your ideas to improve the product.

Reps and shipped work, not reading and credentials. The people who’ve done the reps are the ones who can see the details everyone else misses.

Person with glasses centered, hands clasped; red text reads "10 years of PM lessons in 12 minutes"; logos for Meta, Amazon, Reddit, Roblox.

25 Things I Believe In to Build Great Products

What I believe in is often the opposite of how big companies like to work

creatoreconomy.so iconcreatoreconomy.so

Every designer I’ve managed who made the leap from good to great had one thing in common: they understood why things work, not just how to make them look right. They had product sense. And most of them didn’t learn it from a PM book.

Christina Wodtke, writing for Eleganthack, frames product sense as “compressed experience”:

Product sense works the same way. When a seasoned PM looks at a feature and immediately knows it’s wrong, they’re not being mystical. Their brain is processing hundreds of micro-signals: user flow friction, business model misalignment, technical complexity, competitive dynamics. Years of experience get compressed into a split-second gut reaction.

Swap “PM” for “designer” and this is exactly how design leadership works. The best design critiques I’ve been in aren’t about color choices or spacing—they’re about someone sensing that a flow is wrong before they can articulate why. That’s compressed experience doing its job.

Wodtke’s piece is aimed at product managers, but I think designers need it more. PMs at least have the business context baked into their role. Designers can spend years getting really good at craft without ever building the pattern recognition that tells them what to design, not just how.

This is the part that should be required reading for every designer:

Most people use apps passively — they open Spotify, play music, done. Product people need to use apps actively; not as a user but like a UX designer. They notice the three-tap onboarding flow. They see how the paywall appears after exactly the right amount of value demonstration. They understand why the search bar is positioned there, not there.

Wodtke literally says “like a UX designer.” That’s the standard she’s holding PMs to. So what’s our excuse?

She also nails why reading about product thinking isn’t enough:

Most people try to build product sense by reading about it. That’s like trying to learn tennis by studying physics. You need reps.

The designers on my team who do this—who actively pull apart flows, question trade-offs, study what real products actually ship—are the ones I can’t live without. They don’t need a spec to have an opinion. They already have the reps and consistently impress their PM counterparts.

Wodtke built a nine-week curriculum for her Stanford students that walks through onboarding, checkout, search, paywalls, error states, personalization, UGC, accessibility, and growth mechanics. Each week compares how three different products solve the same problem differently. It’s the kind of thing I wish I could assign to every junior designer on my team.

If you’re a designer and you’re only studying visual references on Dribbble, you’re doing half the work. Go do these exercises.

Building Product Sense: Why Your Gut Needs an Education

Building Product Sense: Why Your Gut Needs an Education

When AI researchers started obsessing over “taste” last year, I had to laugh. They’d discovered what product people have known forever: the ability to quickly distinguish good from bad, elegant fro…

eleganthack.com iconeleganthack.com
Floating 3D jigsaw puzzle piece with smooth blue-to-orange gradient and speckled texture on a deep blue background.

What Wall Street Gets Wrong About SaaS

Last week, B2B software companies tumbled in the stock market, dropping over 10%. Software stocks have been trending down since September 2025, now down 30% according to the IGV software index. The prevailing sentiment is because AI tools like Anthropic’s Claude are now capable of doing things companies used to pay thousands of dollars for.

Chip Cutter and Sebastian Herrara, writing in the Wall Street Journal:

The immediate catalyst for this week’s selloff was the release of new capabilities for Anthropic’s Claude Cowork, an AI assistant that lets users assign agents to perform many types of tasks on their computers using only natural-language prompts. The tools automate workflows and perform tasks across a gamut of job functions with little human input.

The new plug-ins released about a week ago can review legal contracts and perform other industry-specific functions. An update to its model Thursday enhanced capabilities for financial analysis. 

Earlier this week I linked to Gale Robins’ argument that AI makes execution cheap but doesn’t help you decide what to build. Christina Wodtke is making the same case from the research side.

Christina Wodtke opens with a designer who spent two weeks vibe-coding a gratitude journaling app. Beautiful interface, confetti animations, gentle notifications. Then she showed it to users. “I don’t really journal,” said the first one. “Gratitude journaling felt performative,” said the second. Two weeks building the wrong thing. Wodtke’s diagnosis:

That satisfaction is a trap. You’re accumulating artifacts that may have nothing to do with what anyone needs.

Wodtke draws a line between need-finding and validation that I think a lot of teams blur. Skipping the first and jumping to the second means you’re testing your guess, not understanding the problem:

Need-finding happens before you have a solution. You’re listening to people describe their lives, their frustrations, their workarounds. You’re hunting for problems that actually exist—problems people care enough about that they’re already trying to solve them with spreadsheets and sticky notes and whatever else they’ve cobbled together.

Wodtke’s version of fast looks different from what you’d expect:

The actual fast path is unsexy: sit down with five to ten people. Ask them about their lives. Shut up and listen. Use those three magic words—“tell me more”—every time something interesting surfaces. Don’t show them anything. Don’t pitch. Just listen.

“You’ll build less. It’ll be the right thing.” When building is cheap, the bottleneck moves upstream to judgment, knowing what to build. That judgment comes from listening, not prompting.

Solid black square with no visible details.

Vibe-Coding Is Not Need-Finding

Last month a product designer showed me her new prototype. She’d spent two weeks vibe-coding a tool for tracking “gratitude journaling streaks.” The interface was beautiful. Confe…

eleganthack.com iconeleganthack.com

Last September I wrote about why we still need a HyperCard for the AI era—a tool that’s accessible but controllable, that lets everyday people build and share software without needing to be developers. John Allsopp sees the demand side of that equation already arriving.

Writing on LinkedIn, he starts with his 13-year-old daughter sending him a link to Aippy, a platform where people create, share, and remix apps like TikTok videos. It already has thousands of apps on it:

Millions of people who have never written a line of code are starting to build applications — not scripts or simple automations, but genuine applications with interfaces and logic and persistence.

The shift Allsopp describes isn’t just about who’s building. It’s about how software spreads:

This pattern — creation, casual sharing, organic spread — looks a lot more like how content moves on TikTok or Instagram than how apps move through the App Store. Software becomes something you make and share, and remix. Not something you publish and sell. It surfaces through social connections and social discovery, not through store listings and search rankings.

And the platforms we have aren’t built for it. Allsopp points out that the appliance model Apple introduced in 2007 made sense for an audience that was intimidated by technology. That audience grew up:

The platforms designed to protect users from complexity are now protecting users from their own creativity and that of their peers.

This is the world I was writing about in “Why We Still Need a HyperCard for the AI Era.” I argued for tools with direct manipulation, technical abstraction, and local distribution—ingredients HyperCard had that current AI coding tools still miss. Allsopp is describing the audience those tools need to serve. The gap between the two is where the opportunity sits.

Article: Here Comes Everybody (Again) — John Allsopp / 27th January, 2026

Here Comes Everybody (Again)

Clay Shirky’s Here Comes Everybody (2008) was about the democratisation of coordination…what happens when everybody builds. Shirky’s vision of a world where “people are given the tools to do things together, without needing traditional organizational structures” didn’t pan out quite as optimisticall

linkedin.com iconlinkedin.com

Designers know this feeling. Your work lives inside whatever tool made it—Figma, Miro, Framer—and when that tool changes its pricing, gets acquired, or shuts down, your files go with it. We’ve now accepted this as normal.

Dan Abramov argues it shouldn’t be. In a long post about the AT Protocol (the technology behind Bluesky), he starts with how files used to work on personal computers:

The files paradigm captures a real-world intuition about tools: what we make with a tool does not belong to the tool. A manuscript doesn’t stay inside the typewriter, a photo doesn’t stay inside the camera, and a song doesn’t stay in the microphone.

He takes that intuition and applies it to social computing. What if your posts, likes, and follows were files you owned instead of data locked inside Instagram or Twitter? Abramov calls this a “social filesystem” and walks through how the AT Protocol makes it real, from records and collections to identity and links, all building toward one idea:

Our memories, our thoughts, our designs should outlive the software we used to create them. An app-agnostic storage (the filesystem) enforces this separation.

That word “designs” jumped out at me. Abramov is talking about social data, but the same logic applies to creative work. The inversion he describes, where apps react to your data rather than owning it, is the opposite of how most design tools work today:

In this paradigm, apps are reactive to files. Every app’s database mostly becomes derived data—an app-specific cached materialized view of everybody’s folders.

One of the reasons I write content here on this blog as opposed to writing in a social network or even Substack—though my newsletter is on Substack, humans aren’t perfect—is because I want the control and ownership Abramov brings up.

The whole post is worth reading. Abramov makes the AT Protocol’s architecture feel inevitable rather than complicated, and his closing line is the one I keep thinking about: “An everything app tries to do everything. An everything ecosystem lets everything get done.”

Dark background with large white title 'A Social Filesystem', pink 'overreacted' logo and small author photo with 'by'.

A Social Filesystem

Formats over apps.

overreacted.io iconoverreacted.io

Earlier I linked to Hardik Pandya’s piece on invisible work—the coordination, the docs, the one-on-ones that hold projects together but never show up in a performance review. Designers have their own version of this problem, and it’s getting worse.

Kai Wong, writing in his Data and Design Substack, puts it plainly. A design manager he interviewed told him:

“It’s always been a really hard thing for design to attribute their hard work to revenue… You can make the most amazingly satisfying user experience. But if you’re not bringing in any revenue out of that, you’re not going to have a job for very much longer. The company’s not going to succeed.”

That’s always been true, but AI made it urgent. When a PM can generate something that “looks okay” using an AI tool, the question is obvious: what do we need designers for? Wong’s answer is the strategic work—research, translation between user needs and business goals. The trouble is that this work is the hardest to see.

Wong’s practical advice is to stop presenting design decisions in design terms. Instead of explaining that Option A follows the Gestalt principle of proximity, say this:

“Option A reduces checkout from 5 to 3 steps, making it much easier for users to complete their purchase instead of abandoning their cart.”

You’re not asking “which looks better?” You’re showing that you understand the business problem and the user problem, and can predict outcomes based on behavioral patterns.

I left a comment on this article when it came out, asking how these techniques translate at the leadership level. It’s one thing to help individual designers frame their work in business terms. It’s another to make an entire design org’s contribution legible to the rest of the company. Product management talks to customers and GTM teams. Engineering delivers features. Design is in the messy middle making sense of it all—and that sense-making is exactly the kind of invisible work that’s hardest to put on a slide.

Figure draped in a white sheet like a ghost wearing dark sunglasses, standing among leafy shrubs with one hand visible.

Designers often do invisible work that matters. Here’s how to show it

What matters in an AI-integrated UX department? Highlighting invisible work

open.substack.com iconopen.substack.com

For as long as I’ve been in startups, execution speed has been the thing teams optimized for. The assumption was always that if you could just build faster, you’d win. That’s your moat. AI has mostly delivered on that promise—teams can now ship in weeks—see Claude Cowork—what used to take months. And the result is that a lot of teams are building the wrong things faster than ever.

Gale Robins, writing for UX Collective, opens with a scene I’ve lived through from both sides of the table:

I watched a talented software team present three major features they’d shipped on time, hitting all velocity metrics. When I asked, “What problem do these features solve?” silence followed. They could describe what they’d built and how they’d built it. But they couldn’t articulate why any of it mattered to customers.

Robins argues that judgment has replaced execution as the real constraint on product teams. And AI is making this worse, not better:

What once took six months of misguided effort now takes six weeks, or with AI, six days.

Six days to build the wrong thing. The build cycle compressed but the thinking didn’t. Teams are still skipping the same discovery steps, still assuming they know what users want. They’re just doing it at a pace that makes the waste harder to catch.

Robins again:

AI doesn’t make bad judgment cheaper or less damaging — it just accelerates how quickly those judgment errors compound.

She illustrates this with a cascade example: a SaaS company interviews only enterprise clients despite SMBs making up 70% of revenue. That one bad call—who to talk to—ripples through problem framing, solution design, feature prioritization, and evidence interpretation, costing $315K over ten months. With AI-accelerated development, the same cascade plays out in five months at the same cost. You just fail twice as fast.

The article goes on to map 19 specific judgment points across the product discovery process. The framework itself is worth a read, but the underlying argument is the part I keep coming back to: as execution gets cheaper, the quality of your decisions is the only thing that scales.

Circle split in half: left teal circuit-board lines with tech icons, right orange hands pointing to a central flowchart.

The anatomy of product discovery judgment

The 19 critical decision moments where human judgment determines whether teams build the right things.

uxdesign.cc iconuxdesign.cc

I’ve watched this pattern play out more times than I can count: a team ships something genuinely better and users ignore it. They go back to the old thing. The spreadsheet. The manual process. And the team concludes that users “resist change,” which is the wrong diagnosis.

Tushar Deshmukh, writing for UX Magazine, frames it well:

Many teams assume users dislike change. In reality, users dislike cognitive disruption.

Deshmukh describes an enterprise team that built a predictive dashboard with dynamic tiles, smart filters, and smooth animations. It failed. Employees skipped it and went straight to the basic list view:

Not because the dashboard was bad. But because it disrupted 20 years of cognitive routine. The brain trusted the old list more than the new intelligence. When we merged both—familiar list first, followed by predictive insights—usage soared.

He tells a similar story about a logistics company that built an AI-powered route planner. Technically superior, visually polished, low adoption. Drivers had spent years building mental models around compass orientation, landmarks, and habitual map-reading patterns:

The AI’s “optimal route” felt psychologically incorrect. It was not wrong—it was unfamiliar. We added a simple “traditional route overlay,” showing older route patterns first. The AI suggestion was then followed as an enhancement. Adoption didn’t just improve—trust increased dramatically.

The fix was the same in both cases: layer the new on top of the familiar. Don’t replace the mental model—extend it. This is something I think about constantly as my team designs AI features into our product. The temptation is always to lead with the impressive new capability. But if users can’t find their footing in the interface, the capability doesn’t matter. Familiarity is the on-ramp.

Neon head outline with glowing brain and ghosted silhouettes on black; overlaid text: "UX doesn't begin when users see your interface. It begins with what their minds expect to see.

The Cortex-First Approach: Why UX Starts Before the Screen

The moment your interface loads, the user experience is already halfway over, shaped by years of digital memories, unconscious biases, and mental models formed long before they arrived. Most products fail not because of bad design, but because they violate the psychological expectations users can’t even articulate. This is the Cortex-First approach: understanding that great UX begins in the mind, where emotion and familiarity decide whether users flow effortlessly or abandon in silent frustration.

uxmag.com iconuxmag.com

Fitts’s Law is one of those design principles everyone learns in school and then quietly stops thinking about. Target size, target distance, movement time. It’s a mouse-and-cursor concept, and once you’ve internalized the basics—make buttons big, put them close—it fades into the background. But with AI and voice becoming primary interaction models, the principle matters again. The friction just moved.

Julian Scaff, writing for Bootcamp, traces Fitts’s Law from desktop GUIs through touch, spatial computing, voice, and neural interfaces. His argument is that the law didn’t become obsolete—it became metaphorical:

With voice interfaces, the notion of physical distance disappears altogether, yet the underlying cognitive pattern persists. When a user says, “Turn off the lights,” there’s no target to touch or point at, but there is still a form of interaction distance, the mental and temporal gap between intention and response. Misrecognition, latency, or unclear feedback increase this gap, introducing friction analogous to a small or distant button.

“Friction analogous to a small or distant button” is a useful way to think about what’s happening with AI interfaces right now. When a user stares at a blank text field and doesn’t know what to type, that’s distance. When an agent misinterprets a prompt and the user has to rephrase three times, that’s a tiny target. The physics changed but the math didn’t.

Scaff extends this into AI and neural interfaces, where the friction gets even harder to see:

Every layer of mediation, from neural decoding errors to AI misinterpretations, adds new forms of interaction friction. The task for designers will be to minimize these invisible distances, not spatial or manual, but semantic and affective, so that the path from intention to effect feels seamless, trustworthy, and humane.

He then describes what he calls a “semantic interface,” one that interprets intent rather than waiting for explicit commands:

A semantic interface understands the why behind a user’s action, interpreting intent through context, language, and behavior rather than waiting for explicit commands. It bridges gaps in understanding by aligning system logic with human mental models, anticipating needs, and communicating in ways that feel natural and legible.

This connects to the current conversation about AI UX. The teams building chatbot-first products are, in Fitts’s terms, forcing users to cross enormous distances with tiny targets. Every blank prompt field with no guidance is a violation of the same principle that tells you to make a button bigger. We’ve known this for seventy years. We’re just ignoring it because the interface looks new.

Collage of UIs: vintage monochrome OS, classic Windows, modern Windows tiles and macOS dock, plus smartphone gesture demos

The shortest path from thought to action

Reassessing Fitts’ Law in the age of multimodal interfaces

medium.com iconmedium.com

For years, the thing that made designers valuable was the thing that was hardest to fake: the ability to look at a spreadsheet of requirements and turn it into something visual that made sense. That skill got people hired and got them a seat at the table. And now a PM with access to Lovable or Figma Make can produce something that looks close enough to pass.

Kai Wong interviewed 22 design leaders and heard the same thing from multiple directions. One Global UX Director described the moment it clicked for his team:

“A designer on my team had a Miro session with a PM — wireframes, sketches, the usual. Then the PM went to Stitch by Google and created designs that looked pretty good. To an untrained eye, it looked finished. It obviously worried the team.”

It should worry teams. Not because the PM did anything wrong, but because designers aren’t always starting from a blank canvas anymore. They’re inheriting AI-generated drafts from people who don’t know what’s wrong with them.

Wong puts the commoditization bluntly:

Our superpower hasn’t been taken away: it’s more like anyone can buy something similar at the store.

The skill isn’t gone. It’s just no longer rare enough to carry your career on its own. What fills the gap, Wong argues, is the ability to articulate why—why this layout works, why that one doesn’t. One CEO he interviewed put it this way:

“I want the person who’s designing the thing from the start to understand the full business context.”

This resonates with me as a design leader. The designers on my teams who are hardest to replace are the ones who can walk into a room and explain why something needs to change, and tie that explanation to a user need or a business outcome. AI can’t do that yet. And the people generating those 90%-done drafts definitely can’t.

Hiker in blue shirt and cap standing on a rocky cliff edge, looking out over a sunlit forested valley and distant mountains

The 90% Problem: Why other’s AI’s designs may become your problem

The unfortunate reality of how many companies use AI

dataanddesign.substack.com icondataanddesign.substack.com